Supervised learning and associative memory by the random neural network
نویسنده
چکیده
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملTest Bed for Multilayered Feed forward Neural Network Architectures as Bidirectional Associative Memory
Multilayered feed-forward neural networks are considered universal approximators and hence extensively been used for function approximation. Function approximation is an instance of supervised learning which is one of the most studied topics in machine learning, artificial neural networks, pattern recognition, and statistical curve fitting. Bidirectional associative memory is another class of n...
متن کاملAdaptive resonance associative map
-This article introduces a neural architecture termed Adaptive Resonance Associative Map ( ARAM) that extends unsupervised Adaptive Resonance Theory (ART) systems for rapid, yet stable, heteroassociative learning. ARAM can be visualized as two overlapping ART networks sharing a single category field. Although ARAM is simpler in architecture than another class o f supervised ART models known as ...
متن کاملAdaptive fuzzy systems for backing up a truck-and-trailer
Fuzzy control systems and neural-network control systems for backing up a simulated truck, and truck-and-trailer, to a loading dock in a parking lot are presented. The supervised backpropagation learning algorithm trained the neural network systems. The robustness of the neural systems was tested by removing random subsets of training data in learning sequences. The neural systems performed wel...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993